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The paper addresses the problem of reconstructing the vibration "eld of a structure or the
acoustic "eld of a bounded #uid from limited data. The problem relates to practical
situations when there is a need to know the dynamic stress and displacement distribution
over the entire structure, e.g., for estimating its remaining service life, but the vibration may
be measured only on accessible parts of the structure surface. In the paper, this problem is
mathematically formulated and its general properties*solvability, uniqueness, and
continuity are studied. Most attention is paid to the analysis of the error of reconstruction.
One of the main results obtained is the proof of existence of the optimal vibration model of
the structure,which renders minimum to the reconstruction error. The application of the
results to discrete systems is discussed.

( 2001 Academic Press
1. INTRODUCTION

The problem of reconstructing continuous vibration "elds in elastic structures or sound
"elds in bounded #uids from the data collected at a "nite number of discrete points often
arises in structural dynamics and acoustics. In vibration and noise control, a solution of this
problem is necessary to place optimally a limited number of sensors and actuators in order
to control the global "eld best*see, e.g., references [1}3]. In ocean acoustics, it is called the
problem of mode "ltering; it consists of "nding the complex normal mode coe$cients and,
hence, the total acoustic "eld, of an oceanic waveguide from the pressure amplitudes
sampled by a hydrophone array [4}6]. Reconstruction problems of this type are also very
important in planning modal tests and vibration experiments on structures [7}9],
identi"cation of force loading on a structure [10, 11], and in many other problems*see,
e.g., references [12}15]. The references presented above are only a small part of the vast
literature on the subject. In most of these papers, the structure or medium under study is
considered as accessible for measurement, and the question is how to choose appropriate
measurement points to reconstruct the continuous "eld of the entire region.

In the present paper, a "eld reconstruction problem of a somewhat di!erent type is
investigated. It relates to the situation when a part of a structure or #uid is accessible for
direct measurement while the remaining parts of it remain inaccessible. This is the case of
many engineering structures into which insertion of sensors is undesirable or impossible,
and a part of the outer surface is often the only place where the vibration amplitudes may
be measured. So the reconstruction problem of this paper is stated as expansion of the
0022-460X/01/410145#19 $35.00/0 ( 2001 Academic Press
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continuous vibration "eld measured (e.g., by an optical method) on one part of a structure
to adjacent unmeasured parts. In mathematical language, it is a problem of analytical
continuation or extrapolation while most problems studied in the literature are
interpolation problems. For brevity, the problem of this paper will be referred to as
the "eld reconstruction problem or FR-problem. One of the main modi"cations of
the FR-problem has been formulated and studied by the present author in references
[16, 17] with regard to structural intensity: it was shown how to reconstruct the intensity
"eld inside a structure from surface measurements. Later, this formulation was extended
to the general case of reconstructing the vibration stress-and-displacement "eld in
arbitrary linear structures [18}20]. Among the works of other authors that are close
to the present one by formulation, though di!erent by results, are the papers on
modal shape expansion [9, 21], on prediction of the vibration amplitudes at unmeasured
points of an Nd.o.f. system [22], and reconstruction of static stress "elds of machine
members [23].

The objectives of the present work are to formulate rigorously the FR-problem, study
its main properties, and suggest some new results. Most attention will be paid to the
analysis of the reconstruction error. In particular, it will be shown that the random
error in the input data and complexity of the model used for describing the structure play
a key role in forming the reconstruction error. Some peculiarities and even paradoxes,
important for practice, connected with the error of reconstruction will be revealed and
explained.

The layout of the present paper is as follows. In section 2, several modi"cations of the
FR-problem as well as a general solution and its properties (existence, uniqueness, and
continuity) are given. In section 3, is presented one of the main results of the paper*a proof
of the existence of the optimal model of the structure under study that renders the minimum
reconstruction error. In section 4, the results obtained for continous structures are applied
to discrete systems with a "nite number of degrees of freedom. In section 5, the results are
summarized. In Appendix A, is proved the three-dimensional dynamic Almansi theorem on
which uniqueness of the solution is based and Appendix B is devoted to asymptotics of the
singular values of continuous elastic structures.

2. FORMULATION AND GENERAL PROPERTIES OF THE FR-PROBLEM

2.1. BASIC MODIFICATION OF THE FR-PROBLEM

Let there be a bounded continuous linear elastic structure (body) X with boundary
LX vibrating harmonically (time-dependence exp(!iut) is implied) under the action
of an external load applied to the boundary (see Figure 1(a)). The geometry and
material parameters of X are assumed to be known. Further, only elastic structures
will be considered though all the results obtained are valid for bounded #uid media
as well. The boundary of the structure LX is assumed to consist of two parts,
LX"LX

ac
= LX

in
, where part LX

ac
is free of traction and is accessible for direct

measurement of the vibration displacement amplitude, while part LX
in

where external
forces may be applied is inaccessible for measuring vibration and hence neither
displacement nor external force is known at LX

in
. The FR-problem for the structure X

can be formulated as follows. Find a solution to the homogeneous governing di!erential
equation

Lu(x)"0, x3X, (1)
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which satis"es the following boundary conditions on the accessible part LX
ac

:

u (s)"u
0
(s), f (s)"0, s3LX

ac
. (2)

Here, u"Mu
1
, u

2
, u

3
NT is the displacement vector, f"M f

1
, f

2
, f

3
NT the vector of the external

force, u
0
(s) the vector of known (measured) displacement amplitudes, L a linear di!erential

operator of an elliptic type, T means transposition. The operator L is not speci"ed in this
section: for an elastic body equation (1) is the well-known Lame-vector equation of the
elasticity theory, for a #exurally vibrating plate it is the Germain}Lagrange equation, etc.
(see, e.g., reference [24]).

From a mathematical point of view, FR-Problem (1), (2) is not a conventional problem
for an operator of the elliptic type because not a "eld quantity is speci"ed on the inaccessible
part LX

in
of the boundary, while the boundary conditions on the accessible part LX

ac
are

over-determined, i.e., both the displacement and traction are speci"ed. As a consequence,
the FR-problem belongs, according to the de"nition of Hadamard [25], to the class of
ill-posed problems. Solutions to such problems are extremely sensitive to errors in the input
data u

0
(s).

The boundary value problem (1), (2) can be reformulated as a Fredholm integral equation
of the "rst kind

u
0
"Gf, (3)

where f is the unknown vector force acting on the inaccessible boundary LX
in
, G the integral

operator over LX
in

with the matrix Green function (which is assumed to be known) as the
kernel [17]. The integral formulation is useful for investigating the general properties. It is
also used in the identi"cation of a force loading on a structure via the remote structure
response [10, 11].

2.2. OTHER MODIFICATIONS

Another practical modi"cation of the FR-problem of this type is that when the vibration
amplitudes are prescribed (measured) not only on a part of the boundary but also on a part
X

ac
of the structure X (Figure 1(b)). This is mostly the case of two- and one-dimensional

structures (shells, plates, beams, rods, etc.).
From a mathematical point of view, the data in the region X

ac
are excessive. For

constructing a unique solution, it is su$cient to know the vibration amplitudes only on the
corresponding part of the boundary. So, this modi"cation of the FR-problem is reduced to
the basic modi"cation as shown in Figure 1(b). However, from a practical point of view,
the data in X

ac
are not redundant: when the measured values are contaminated by noise, the

reconstruction error is strongly dependent on the amount of data: the more the data,
the higher the accuracy of reconstruction.

One more modi"cation of the FR-problems relates to large and non-uniform structures
that are too complicated to be reasonably treated analytically or numerically. In
this case, the structure is divided into several more simple and tractable substructures.
For each of them the corresponding FR-problem is formulated. To reconstruct
the stress-and-displacement "eld in such structures one has, thus, to solve
independently several problems (1)} (3) and to collect the results into one solution (see
Figure 1(c)).



Figure 1. The "eld reconstruction problem for an elastic structure X with boundary surface LX"LX
ac

= LX
in
.

(a) Basic modi"cation: given the displacement vector u
0
on a free of traction accessible part LX

ac
of the boundary; it

is required to reconstruct via u
0

the stress-and-displacement "eld in X and, if needed, unknown external force
f applied to the inaccessible part LX

in
of the boundary. (b) Modi"cation of the FR-problem (displacement is

prescribed in a part X
ac

of the structure) is reduced to the basic modi"cation. (c) The FR-problem for a complicated
structure may be split into several (here three) more simple FR-problems for substructures X

1
, X

2
and X

3
.
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2.3. FORMAL SOLUTION AND GENERAL PROPERTIES

In this section, the main general properties of the FR-problem are brie#y documented (for
more details see reference [17]). However, "rst an exact formal solution based on the
singular-value decomposition (SVD) technique is presented.

Let p
1
'p

2
'2 be the singular values of the integral operator G in equation (3),

and Mf
1
, f

2
,2N and Mu

1
, u

2
2N be the singular pair, i.e., two sets of orthonormal functions

(note that p2
m

are the eigenvalues of the Hermitian operators G*G and GG*, f
m

and u
m

being
their eigenfunctions (see, e.g., reference [26]). Representing the given function u

0
as a series

in u
m

u
0
(s)"

=
+

m/1

b
m
u
m
(s) (4)

and seeking the solution for f as a series in f
m
, one can obtain, after substitution into

equation (3), the following exact formal solution for the unknown forces and, hence, for the



FIELD RECONSTRUCTION 149
FR-problem:

f
ex

(q)"
=
+

m/1

b
m

p
m

f
m
(q). (5)

Here, co-ordinates s and q relate to the accessible and inaccessible regions of the structure,
s3LX

ac
, q3LX

in
respectively.

Existence of solution. It follows from equation (5) that a bounded solution of
the FR-problem exists (the series converges) if the coe$cients b

m
in expansion (4)

of the given vector function u
0
(s) tend to zero more rapidly than the singular values

p
m

do. As shown in Appendix B, the singular values decrease exponentially with the
index m. Therefore, the prescribed function u

0
(s) must contain only few "rst spatial

harmonics u
m
(s) with lower indexes m. In other words, a solution of the reconstruction

problem exists if the measured function u
0
(s) is su$ciently smooth, i.e., only "rst coe$cients

b
m

in its spatial expansion (4) are not zeros. If the displacement u
0
(s) could be

known mathematically exactly and without errors, the solution of the FR-problem would,
in principle, exist for an arbitrarily small, "nite-continuous accessible part LX

ac
of the

structure boundary.
In reality, the prescribed function u

0
(s) is always contaminated with random noise that, as

a rule, has a wide spatial spectrum. Expansion (4) of such data contains non-zero
components of large indexes which, after amplifying by inversion, i.e., by factors p~1

m
in

equation (5), may give an arbitrarily large error in the solution, making it unstable. Thus, for
noisy data, an exact solution of the FR-problem does not generally exist, and only
approximate solutions may be found in that case (see section 3).
;niqueness of solution. A solution to the FR-problem, when it exists, is unique.

This property is a consequence of the fact that the boundary conditions of both
types, kinematic and force, are imposed on a continuous region LX

ac
of the structure

boundary (see equation (2)). A proof of uniqueness can be carried out with the help
of the Almansi theorem [27] in the same manner as is done in reference [17]. According
to this theorem, a "nite elastic body is at rest and stress-free if on a part of its surface,
even on very small one, the displacements and stresses are simultaneously equal to zero.
If two di!erent solutions to the FR-problem, u

1
and u

2
, are allowed to exist, the di!erence

u
1
!u

2
satis"es the conditions of the Almansi theorem, and hence u

1
!u

2
"0 everywhere

in the body. The proof of the Almansi theorem for three-dimensional vibrating
bodies, as well as a discussion of its validity for discrete systems, is given in Appendix A of
this paper.

Continuity of solution. A solution of the FR-problem, when it exists, does not
continuously depend on the input data u

0
(s). This property follows from the Riemann

lemma [28]: small variations in the data of a Fredholm integral equation of the "rst kind
with an analytical kernel can lead to arbitrarily large variations in the solution. Integral
equation (3) has an analytical kernel, since the accessible and inaccessible parts of the
boundary do not intersect, therefore its solutions are not stable with respect to the input
data u

0
(s). Consequently, the "eld reconstruction problem belongs to ill-posed, in the

Hadamard sense [25], problems of mathematical physics. Such problems are often met with
in various "elds of science. In fact, all physical problems where a cause is determined from
consequences are ill-posed. There is a lot of literature on the subject with many techniques
developed for treating them*see, e.g., reference [28]. The principal idea of all these
techniques is that such an ill-posed problem is replaced by a certain well-posed problem
that is close, in some sense, to the initial one. One of them based on the truncated SVD is
used in the next section.
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3. EXISTENCE OF THE OPTIMAL VIBRATION MODEL

In this section, the FR-problem with the input data containing a random noise
component is considered. As was established in the previous section, the problem in this
case generally does not have an exact solution and should therefore be reshaped to become
solvable approximately. Section 3 shows how this is done in the frame of the SVD approach.
Most attention is paid to the reconstruction error of approximate solutions. It is proved
that there exists an optimal model of the vibrating structure that yields an approximate
solution with the minimal reconstruction error. The remarkable feature is that, though the
structure under study is continuous, its optimal model has a "nite number of model
parameters (and d.o.f.s) which is determined mostly by the SNR of the input data. This
result (existence of the optimal model), owing to the generality of its derivation, is valid for
all modi"cations of the reconstruction problem in any linear structure or medium.

3.1. TRUNCATED SVD-SOLUTION

Let the displacement amplitudes u
0
(s) in formulations (1)}(3) be measured with an

additive noise n (s) which has a wide singular spectrum Md
m
N, i.e., the amplitudes of the

spatial noise components in the expansion

n(s)"
=
+

m/1

d
m
u
m
(s) (6)

decrease slowly compared to the singular values, Dd
m
/p

m
D'1. (Note that the primary noise is

a random function of time and space, n (t, s). Here, it is assumed that the function n (s) is the
u-component of the "nite Fourier transform of a particular sample of n (t, s)). Examples of
such a noise are the instrumentation noise or the noise due to the rounding errors of the
digital representation of the input data in a computer. For them, series (5) diverges and the
exact solution of the FR-problem does not exist.

One way to attack the FR-problem in that situation is to seek an approximate solution in
the form of a truncated SVD

f (q)"
N
+
n/1

a
n
f
n
(q) (7)

containing a "nite number N of terms. The main idea of such a method (used also in other
works, e.g., references [6, 9, 17]) is that, with a judicious choice of the number N of singular
modes, it does not di!er much from the exact solution (5) because it does not contain spatial
components of high indexes. On the other hand, this solution cuts o! higher components
thereby reducing the inaccuracy due to the instrumentation and computer noise.

It should be emphasized, however, that the truncation of the SVD-solution actually
means that the continuous elastic medium of the problem (having in"nite number of d.o.f.s)
is replaced with an elastic system with a "nite number of generalized d.o.f.s de"ned by the
set of N singular modes. (Perhaps, it could be proved that such a system is equivalent to
a certain FE-model.) The problem of "nding approximate solution (7) to the initial
FR-problem is, thus, equivalent to the problem of "nding an exact solution of the same
FR-problem for a more simple (discrete) elastic system. This new system, being described by
the "rst N &&long-wavelength'' singular modes, has smooth response functions and is
insensitive to &&short-wavelength'' external loading at the boundary LX

in
. Therefore, the

solution to the new FR-problem can be proved to be stable with respect to the input data
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variations and, besides, satis"es the other two conditions of Hadamard [25]. So the
FR-problem for the simpli"ed structure (obtained as a result of truncation of the SVD) is
a well-posed mathematical problem and its solutions may be obtained by usual techniques.
The question of how these solutions relate to solutions of the initial FR-problem will be
discussed in the next two subsections.

Substituting equations (4), (6) and (7) into equation (3) with noise added, u
0
#n"Gf,

and using the orthogonality property of the singular modes, one can obtain the sought
approximate solution of the initial FR-problem in the form

f(q, N)"
N
+
n/1

(b
n
#d

n
) f

n
(q)/p

n
. (8)

3.2. RECONSTRUCTION ERROR

The goal now is to examine how closely solution (8) approximates to the actual vibration
"eld in the inaccessible part of the structure. The di!erence between this solution and exact
solution (5) is

Df"f (q, N)!f
ex

(q)"
N
+
n/1

(d
n
/p

n
) f

n
(q)!

=
+

n/N`1

(b
n
/p

n
) f

n
(q),

q3X
in
. The squared Euclidean norm of the di!erence in the inaccessible part of the

structure

EDfE2
in
"PX

in

DDf D2 dq"
=
+

n/N`1

Db
n
D2/p2

n
#

N
+
n/1

Dd
n
D2/p2

n
(9)

characterizes the absolute reconstruction error. After introducing the norm of the exact
solution

Ef
ex

E2
in
"PX

in

Df
ex

D2 dq"
=
+
n/1

Db
n
D2/p2

n
,

the relative "eld reconstruction error can be de"ned as

D
rec
"EDfE

in
/Ef

ex
E
in
. (10)

Similarly, the absolute and relative errors of the approximate solution (8) in the input
(measured) data can be introduced as

D
data

"Eu
0
#n!Gf (q, N)E

ac
/Eu

0
E
ac

, (11)

where the Euclidean norm is taken over the accessible part of the structure

Eu
0
E2
ac
"PX

ac

Eu
0
(s)D2 ds"

=
+
n/1

Db
n
D2, Eu

0
#n!Gf (q, N)E2

ac
"

=
+

n/N`1

Db
n
#d

n
D2. (12, 13)

3.3. MINIMUM RECONSTRUCTION ERROR

Since series (12) and the analogous series for noise (6), EnE2
ac
"+=

n/1
Dd

n
D2, converges

absolute error (13) as well as relative error (11) in the data decrease monotonically with N. If
one is interested in a good description of the input (measured) data only, one should choose
as complex a singular model as possible: the "ner the model, i.e., the larger the N the better



Figure 2. Reconstruction error (solid lines) and error in the input data (dashed lines) as functions of the model
complexity (a) SNR"16 dB and (b) SNR"36 dB.
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the approximation, so that the error in the data tends to zero, limD
data

"0, when N tends to
in"nity.

The reconstruction error behaves quite di!erently. From equation (9) it is seen that the
absolute reconstruction error consists of two components. The "rst component is the model
error, i.e., the error due to removing singular modes of high indexes. It is represented by the
"rst summation on the right hand side of equation (9). This component of the error
diminishes monotonically with N: the "ner the model, the smaller the model error. The
second component of the reconstruction error, represented by the second summation in
equation (9), is the noise error. It is induced by noise and, owing to inequality
Dd

n
D/p

n
'1*see preceeding section*increases monotonically with N: the "ner the model,

i.e., the larger the N, the greater the noise error.
When N is small, the "rst (decreasing) component of the error dominates. When N is

large, the second (increasing) component becomes dominant. Mathematically, a sum of two
variables, one of which monotonically decreases and another increases, must have
a minimum. Thus, the reconstruction error, at a certain number N"N

0
has a minimum.

The model containing N
0

singular modes is just the optimal model of the problem that
provides the minimum reconstruction error. Figure 2 depicts reconstruction error (10) as
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well as the error in data (11) as functions of model complexity, i.e., of the number N of the
model parameters. The results correspond to the structure (bar) and frequency for which the
"rst 10 singular values are equal to unity and the rest decay exponentially with the index
n as p

n
"exp[!a(n!10)] with a"0)1 (see Appendix B). The data are given by expansion

(4) with coe$cients decaying faster than the singular values, b
n
"exp(!bn) with b"0)2,

while noise is taken such that the coe$cients of its expansion (6) tend to zero rather slowly,
d
n
"d

0
exp(!cn) with c"0)01, and the exact solution of the FR-problem does not exist

(d
n
/p

n
'1). The constant d

0
depends on the signal-to-noise-ratio de"ned as

SNR"20 log Eu
0
E
ac
/EnE

ac
. (14)

It is seen in Figure 2 that the error in the data (dashed lines) diminishes monotonically while
the reconstruction error (solid lines) decreases for small N (coarse models) and increases for
large N ("ne models) having a distinct minimum. The optimal number N

0
of the model

parameters depends on the signal-to-noise-ratio (14): the higher the SNR the larger the N
0
.

In Figure 2, the values SNR"16 and 36 dB correspond to the optimal models with
N

0
"17 and 30. In the limit, when the data are noiseless, the reconstruction error decreases

monotonically for all N, so that the "ner the model the better the reconstruction is.
Figure 3 illustrates the structure of the errors shown in Figure 2: both components of the

errors, the model error component and the error component due to noise (see equations (9)
and (13)), are represented by dashed lines. In case of the data error (Figure 3(a)), both
components are decreasing and therefore the total error also decreases monotonically*
rapidly for small N (as the model component) and then changes its slope and decreases (as
the noise component) for large N. In the case of the reconstruction error (Figure 3(b)), the
model error components decreases rapidly with N, while the noise component increases, so
that the total reconstruction error tends in turn to these two curves having a minimum at
the point of their intersection: N"N

0
"30 (SNR"36 dB).

As can be clearly seen in Figures 2 and 3, the minimum of the reconstruction error is
situated near the region where the curve of the data error changes its slope. In other words,
the minimum corresponds to models for which the model error component becomes
comparable with the noise error component. This observation is useful in practice: in
reconstructing the vibration "eld in a real structure, when the optimal model is unknown
a priori, this property allows one to "nd the optimal number N

0
using the input data

only [19].
The fact that "ner models (N'N

0
) may have larger reconstruction error looks like

a paradox being at variance with physical intuition, i.e., with the statement: &&More exact
models must give better description of reality.'' However, this statement is not true always.
The FR-problem is just the case when the opposite is valid.

An explanation of the paradox is the following. In the reconstruction problem, the model
parameters are identi"ed from the input data measured with unavoidable noise. Finer
models, containing the singular modes of high indexes, N'N

0
describe mostly the noise

component instead of the signal. It is evident, e.g., in Figure 3(a) that for N'20, signal
components are too small to matter and the coe$cients of the modes are determined by the
noise components. These higher index modes give a better description of the measured data,
but they have nothing to do with the actual vibration "eld signal in the inaccessible parts of
the structure and therefore may, and actually do, give large errors. Thus, physically, it is not
reasonable to approximate the noisy input data very accurately. There should exist the
optimal accuracy of describing measured data, and, hence, the optimal vibration model of
the structure, which is the best for reconstructing the vibration "eld in unmeasured parts of
the structure.



Figure 3. Error in the input data (a) and reconstruction error (b) versus model complexity: total error 1 and its
components*error of modelling 2 and error due to noise 3. SNR"36 dB.
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4. FR-PROBLEM IN Nd.o.f. SYSTEMS

It is common practice nowadays to represent an elastic structure as a discrete mechanical
system, e.g., as a "nite-element model. Therefore, in this section it will be shown what the
above results, established for continuous structures, mean when applied to systems with
a "nite number N degrees of freedom (Nd.o.f. systems).

Relating to the "eld reconstruction problem, the main di!erence between continuous
structures and discrete systems is in the number of d.o.f.s. In a continuous structure,
the number of measurement points in any of its accessible parts is arbitrarily large
(mathematically, in"nite). In Nd.o.f. systems, the number of measured points is always
"nite. Another di!erence is that a general Nd.o.f system may be much more complex than
a typical continuous structure: a discrete model of such a continuous structure has sparse
mass and sti!ness matrices, while the structure matrices of Nd.o.f. systems may, generally,
be arbitrary. As a result, in a continuous structure, it is possible to expand the vibration "eld
from a small measurement part to much larger unmeasured adjacent parts of the structure,
while in a general Nd.o.f. system this possibility is severely restricted.
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4.1. GENERAL Nd.o.f. SYSTEM

Consider an arbitrary linear system with Nd.o.f. executing harmonic vibration of
angular frequency u under the action of external forces applied to N

f
d.o.f. Let the

rest of the N!N
f

undriven d.o.f.s consist of N
m

measured d.o.f.s and N
u

unmeasured
d.o.f.s so that N"N

m
#N

u
#N

f
. The "eld reconstruction problem is formulated as

follows.

Given the structural matrices of the system and N
m

complex amplitudes x
m

of the vibration
displacement of the measured d.o.f.s, ,nd N

u
#N

f
unmeasured displacement amplitudes, x

u
and

x
f
, and N

f
amplitudes of the external forces, f

1
.

The equations of motion of this system can be written as

Ax"f, (15)

where N-vector x consists of the above three subvectors, x"[xT
m
, xT

u
, xT

f
]T, the

"rst N
m
#N

u
components of the N-vector f are equal to zero, f"[0, 0, fT

1
]T;

A"K!iuB!u2M is an (N]N)-matrix of the complex dynamic sti!nesses, with M,
K and B being real symmetric mass, static sti!ness and damping matrices, T
denotes transposition. By splitting the matrix A into nine submatrices, according to the
splitting the N-vectors into three subvectors, one can represent set (15) of N equations in the
form

A
mm

x
m
#A

mu
x
u
#A

mf
x
f
"0 (N

m
equations),

A
um

x
m
#A

uu
x
u
#A

uf
x
f
"0 (N

u
equations),

A
fm

x
m
#A

fu
x
u
#A

ff
x
f
"f

1
(N

f
equations). (16)

As N
m

measured amplitudes x
m

are given while other displacement amplitudes and forces
are unknown, it is reasonable to rewrite set (16) as

A
mu

A
mf

0

A
uu

A
uf

0

A
fu

A
ff

!E
f

x
u

x
f

f
1

"!

A
mm

x
m

A
um

x
m

A
fm

x
m

, (17)

where E
f

is the unity matrix of order N
f
. Set (17) represents N"N

m
#N

u
#N

f
linear

algebraic equations with N
u
#2N

f
unknowns.

If the number N
m

of the measured d.o.f.s is less than the number N
f

of the driven d.o.f.s,
the number of equations in set (17) is less than the number of unknowns and therefore the
set has an in"nite number of solutions. It means that the full reconstruction of the "eld is
impossible in this general case. So, the condition of existence of the unique solution to set
(17) is the inequality

N
m
*N

f
, (18)

which means that, for reconstructing the vibration "eld in a general Nd.o.f. system, the
number of the measured d.o.f.s must be greater than the number of the driven d.o.f.s. When
the inequality holds and the rank of the matrix is equal to the number of unknowns, all the
displacement and force amplitudes can be computed uniquely through the measured data
by any method of linear algebra, e.g., by the SVD techniques [29].
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Uniqueness condition (18) is new compared to that established in the previous section.
The uniqueness theorem for the "eld reconstruction in continuous structures does not put
any restrictions on the size of the measured (accessible) region, except that it must be "nite,
and the area of this region may be much less than the area of the unmeasured (inaccessible)
driven region. When such a continuous structure is modelled by a Nd.o.f. system, inequality
(18) may be broken; nevertheless, the reconstruction is possible. Actually, there is no
contradiction in this. The point is in the speci"c, sparse and very often band-like structural
matrices of engineering continuous structures that allows one to expand the vibration "eld
from measured d.o.f.s to the unmeasured undriven d.o.f.s. The situation is illustrated in
more detail in the following example.

4.2. CHAIN-LIKE N.d.o.f. SYSTEM

Consider a spring}mass chain in Figure 4, i.e., one-dimensional discrete system with
Nd.o.f. which models a non-uniform rod longitudinally vibrating in horizontal direction.
The "rst ¸ masses are free of forcing; external forces act on the rest of the N!¸ masses. The
harmonic forced vibration of the system is described by equation (15) with the displacement
vector x"[x

1
,2, x

N
]T, force vector f"[0,2, 0, f

L`1
,2, f

N
]T, and the following matrix

of the dynamic sti!ness:

A"

a
1

!k
1

0 0 * 0 0 0

!k
1

a
2

!k
2

0 * 0 0 0

0 !k
2

a
3

!k
3

* 0 0 0

0 0 !k
3

a
4

* 0 0 0

* * * * * * * *

0 0 0 0 * a
N~2

!k
N~2

0

0 0 0 0 * !k
N~2

a
N~1

!k
N~1

0 0 0 0 * 0 !k
N~1

a
N

, (19)

where a
1
"k

1
!m

1
u2, a

j
"k

j~1
#k

j
!m

j
u2, j"2,2, N. The matrix is tri-diagonal

and this allows one to reconstruct the vibration "eld in all the undriven d.o.f.s, though
inequality (18) may not be satis"ed. Namely, according to the results of section 3, to
reconstruct the "eld in the rod, it is su$cient to know only one quantity, the displacement
amplitude at the free end, i.e., the amplitude x

1
of the "rst mass of the discrete model in

Figure 4. From the "rst equation (15), (19) one can "nd the amplitude x
2
of the second mass,

x
2
"x

1
a
1
k
1
. Then, knowing amplitudes x

1
and x

2
, one can, from the second equation (15),

compute the displacement amplitude x
3

of the third mass. Continuing this process, one can
"nd the vibration amplitudes of all the d.o.f.s that are free of the external loading, x

j
with
Figure 4. A discrete chain-like model of a non-uniform longitudinally vibrating thin rod.
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j"2,2, ¸, and even the amplitude x
L`1

of the "rst driven mass. However, the amplitudes
of the other driven masses as well as the force amplitudes may not be obtained because
inequality (18) is not satis"ed when the number of the forces is greater than one. Only when
there is one external force acting on the last mass of the chain, requirement (18) is met
(N

m
"N

f
"1), and all the displacement amplitudes and force amplitude f

N
may be

reconstructed uniquely.

4.3. OTHER EXAMPLES

The chain system in Figure 4 is one of the simplest Nd.o.f. systems. Each of its d.of.s
interacts only with the two nearest d.o.f.s and its dynamic sti!ness matrix is tri-diagonal.
These features make it possible to expand the vibration "eld from one measured d.o.f.s to all
unmeasured undriven d.o.f.s independently of the number of external forces.

In a similar manner one can study a chain in which every mass interacts with the "rst and
second neighbours and its structural matrices are "ve-diagonal. This chain models
a #exurally vibrating beam. According to the results of section 3, for reconstructing the "eld
in the beam one needs to measure two quantities, the displacement and slope amplitudes of
the free end or, equivalently, the amplitudes x

1
and x

2
of the "rst two masses of the chain.

Using equation (15) or (17), one can compute, through x
1

and x
2
, the amplitudes of all

adjacent undriven d.o.f.s and the nearest two driven d.o.f.s.
The structural matrices of the "nite-element models and "nite-di!erence models for

engineering structures are sparse and many of them are band-like [30, 31]. For a model with
(2k#1) diagonal matrices, knowing the displacement amplitudes of N

m
"k undriven d.o.f.s

permits the expansion of the vibration "eld to all adjacent undriven d.o.f.s without
reconstructing all the external forces. However, if k is comparable with the number N

f
of the

driven d.o.f.s so that inequality (18) holds it may be preferable to compute all the unknown
displacement and force amplitudes from equation (17) like in the case of general Nd.o.f
systems (see section 4.1.).

Thus, reconstruction of the vibration "eld in Nd.o.f. systems with simple (sparse,
band-like) structural matrices may be performed by expansion of the "eld from a small
number of undriven measured d.o.f.s to a larger number of unmeasured undriven d.o.f.s
without reconstructing external forces, as is done in continuous structures. For complex
Nd.o.f. systems with "lled dynamic sti!ness matrices, the reconstruction is possible if the
number of measured d.o.f.s is greater than the number of external forces, and it does not
much matter in this case the amplitudes of which d.o.f.s, driven or undriven, are actually
measured.

5. MAIN RESULTS AND CONCLUSION

A problem of reconstructing the harmonic vibration "eld in a linear structure from
limited data measured on its accessible part is considered. This problem is mathematically
formulated for continuous elastic structures; its general properties have been investigated. It
is shown that the problem has a unique solution even when the data are measured on
a small continuous part of the structure surface. However, the problem is ill-posed in the
Hadamard sense and is unstable with respect to variations in the input data. When the data
contain random noise the problem generally does not have an exact solution and should
therefore be reshaped to become solvable approximately. This is done in the frame of the
truncated SVD technique. Most attention is paid to the reconstruction error of approximate
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solutions. It is proved that there exists an optimal model of the vibrating structure that yields
an approximate solution with the minimal reconstruction error. The remarkable feature is
that, though the structure under study is continuous, its optimal model has a "nite number of
model parameters (and d.o.f.s) which is determined mostly by the signal-to-noise-ratio of the
input data. This general result (existence of the optimal model) is valid for all modi"cations of
the reconstruction problem in any linear structure or medium.

Applicability of the results, obtained for continuous structures, to discrete systems with
"nite degrees of freedom is also discussed. It is shown in particular that, in continuous
structures, continuation of the vibration "eld from measured parts to adjacent unmeasured
parts is possible owing to the very simple governing di!erential equations of the linear theory
of elasticity, which, after discretization, give sparse or band-like sti!ness and mass matrices of
the corresponding discrete models. For general Nd.o.f. systems with full structural matrices,
the reconstruction problem reduces to solvability of a set of linear algebraic equations.

The FR-problem has many aspects. This paper deals mostly with the mathematical
formulation and general properties of the problem. Practically, a very important aspect is
concerned with estimation of the minimum reconstruction error and development of the
algorithms that permit to attain the lowest values of the error. This aspect, as well as its
experimental implementation, is a challenging topic for future work.
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APPENDIX A: THE DYNAMIC ALMANSI THEOREM

Let a "nite continuous three-dimensional elastic body be free of volume force,
and the displacements and surface forces be zero on a part LX

ac
of the body surface. Then,

according to the Almansi theorem, there are no stresses anywhere in the body, and it
is at rest. An equivalent formulation is: there does not exist a surface forcing that
gives a non-zero response displacement at a small continuous part of the surface free
of the forcing.

Almansi proved the theorem in 1907 for static elasticity [27]. Its extension to the
dynamic theory of elasticity in the two-dimensional case is given in reference [17].
A proof of the theorem is presented for the general three-dimensional case of the
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linear theory of dynamic elasticity. The proof is followed by a discussion of its validity for
discrete structures.

For the sake of simplicity, it is assumed that the body under study is made of an
isotropic elastic material and a small continuous part LX

ac
of the body surface is #at

and lies in the x}y plane (z"0), of Cartesian co-ordinates. The conditions of the
theorem at the surface part LX

ac
are that three components of the displacement are zero,

namely,

u (x, y, 0)"v(x, y, 0)"w (x, y, 0)"0 (A1)

and three components of the stress tensor are also zero,

p
zz

(x, y, 0)"p
yz

(x, y, 0)"p
xz

(x, y, 0)"0, (A2)

where x, y3LX
ac

and the z-axis points into the body. The plan of the proof is "rst to show
that all derivatives of the displacement components are zero in the region LX

ac
, and then

extend the vibration "eld analytically, step by step, from LX
ac

to the entire body. The proof
is based on the use of Hook's law [32]:

p
xx
"K[(1!l) Lu/Lx#l(Lv/Ly#Lw/Lz)], p

xy
"G(Lu/Ly#Lv/Lx),

p
yy
"K[(1!l) Lv/Ly#l(Lu/Lx#Lw/Lz)], p

xz
"G(Lu/Lz#Lw/Lx), (A3)

p
zz
"K[(1!l) Lw/Lz#l(Lu/Lx#Lv/Ly)], p

yz
"G(Lv/Lz#Lw/Ly) .

and the equation of motion [32]:

Lp
xx

/Lx#Lp
xy

/Ly#Lp
xz

/Lz#ou2u"0,

Lp
xy

/Lx#Lp
yy
/Ly#Lp

yz
/Lz#ou2v"0,

Lp
xz

/Lx#Lp
yz
/Ly#Lp

zz
/Lz#ou2w"0. (A4)

Here, K"E/(1#l)(1!2l), G"E/2(1#l); E, l and o are Young's modulus, the Poisson
ratio and density of the material; u is the angular frequency (harmonic factor exp(!iut) is
implied). Note that equations (A4) are homogeneous because, according to the theorem
condition, the body is free of volume forcing. First, it will be proved that all derivatives of
the displacement components with respect to the co-ordinates x, y, z are equal to zero at all
internal points of the region LX

ac
. There are nine derivatives of the "rst order. Six of them

are equal to zero,

Lu/Lx"Lu/Ly"Lv/Lx"Lv/Ly"Lw/Lx"Lw/Ly"0, (A5)

because the components u, v and w are constant (zero)in LX
ac
, see equation (A1). Three

remaining derivatives (with respect to z) are zero due to three equations (A2). For example,
from the "rst equation (A2) one obtains, using equations (A3) and (A5), that Lw/Lz"0.
Similarly, two other equations can be obtained:

Lu/Lz"Lv/Lz"Lw/Lz"0 in LX
ac

. (A6)

Thus, all the derivatives of the "rst order are zero.
There are 18 derivatives of the second order. Equality to zero of 15 of them can be

obtained by di!erentiation of equations (A5) and (A6) with respect to x and y. Equality to
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zero of the remaining three derivatives follows from three equations (A4) after substitution
of equations (A3).

Suppose now that all 3n(n#1)/2 derivatives of order (n!1) are zero, then, by
di!erentiating them with respect to x and y, one can derive that all nth derivatives but three
are equal to zero in LX

ac
. Equality to zero of the remaining three (L(n)u/Lzn, L(n)v/Lzn,

L(n)/w/Lzn) can be obtained from three equations (A4) after di!erentiating them (n!2) times
with respect to z. Thus, if all the derivatives of order (n!1) are zero, then all the derivatives
of order n are also zero. By inductive reasoning one can conclude that all the derivatives of
all orders of the displacement components with respect to co-ordinates x, y and z are equal
to zero in the region LX

ac
.

Now choose a point, say (0, 0, 0), in LX
ac

and expand displacements u, v and w as functions
of x, y, z in the Taylor series. This series converges in a spherical vicinity that does
not contain singular points and besides is equal identically to zero, because all the
derivatives at (0, 0, 0) are zero. Hence, the displacement components and all their derivatives
are zero at inner points of the vicinity. Choosing another point in this vicinity, one can
construct another vicinity with the radius of convergence that equals the distance to the
nearest singular point. The displacement "eld and all the derivatives are zero also in
this vicinity. Since, owing to the absence of volume forces, there are no singular points
within the body and the only singular points may lie on the boundary surface outside
the region LX

ac
, the entire body, with the possible exception of the boundary points, can

be covered by spherical overlapping vicinities in which all the displacement components
as well as their derivatives and, hence, all the stress components are equal to zero. This
proves the Almansi theorem for "nite-continuous elastic bodies or structures of isotropic
materials.

In a similar manner, the Almansi theorem can be proved in more complicated
cases, e.g., for bodies of anisotropic materials and for structures built up of di!erent
members.

In conclusion, several remarks follow concerning the validity of the theorem for discrete
systems with a "nite number of degrees of freedom. For such systems the theorem can be
formulated as follows: if the vibration amplitudes of N

m
undriven d.o.f.s of an Nd.o.f. system

are zero, the displacement of all other d.o.f.s and external forces are also zero. The necessary
number N

m
of immobile d.o.f.s depends on the dynamic sti!ness matrix of the system. For

a general Nd.o.f. system, which has "lled structural matrices and for which it is not simple to
identify boundary and inner d.o.f.s, the theorem reduces to the existence of the unique
solution to the set of linear algebraic equations (17). A physical sense and practical
usefulness the Almansi theorem has when applied to Nd.o.f. systems with sparse (band)
sti!ness and mass matrices for which the number N

m
of immobile d.o.f.s may be

comparatively small. Equality to zero of the vibration amplitudes of a small number of
d.o.f.s yields immobility of almost all d.o.f.s of the system. For example, for a system with
a band dynamic sti!ness matrix of bandwidth k [31], this number equals k and from
equality to zero of k d.o.f.s follows equality to zero of all d.o.f.s with possible exclusion of
some driven d.o.f.s, see also section 4.

APPENDIX B: ASYMPTOTICS OF SINGULAR VALUES

In this appendix, the decay function of the singular values p
n

of the operator G in
equation (3) with large indexes n is estimated in several typical situations. For an elastic
body X that executes harmonic vibration under the action of an external force f(q)
distributed over a part LX

in
of the body surface LX and for which the vibration response
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u
0
(s) is measured at another surface part LX

ac
(see Figure 1(a)), it is shown that the singular

values decay with n as

p
n
:p

0
na exp(!bn), (B1)

where a and p
0

are functions of the body parameters and frequency, and b depends on the
distance between the surfaces LX

in
and LX

ac
(b is zero when n is less than a certain number

n
0
, and is non-zero when n'n

0
).

Physically, a singular value p
n
of the operator G has a sense of the in#uence coe$cient of

the certain load at the excitation surface LX
in

on the response at the receiver surface LX
ac

.
More exactly, when the unit external force of the nth singular form f

n
(q) is applied to LX

in
,

the displacement response at LX
ac

is equal to p
n
u
n
(s) and, thus, the amplitude of the response

equals p
n
see also equations (4) and (5) of section 2.3. The orthonormal vector-functions u

n
and f

n
depend on physical and geometric parameters of the body. However, some of their

properties are valid for all linear mechanical systems. In particular, all these functions are of
oscillating character (the higher the index n is, the more rapid the oscillations are), the
spatial period of oscillations being inversely proportional to index n.

Bearing this in mind, consider an elastic body (or medium) with surfaces LX
in

and LX
ac

that are #at, parallel, have a characteristic dimension l and lie in the planes z"z
in

and
z"z

ac
of Cartesian co-ordinates. Let the singular form f

n
be approximately represented as

f
n
(q):f

0
exp(2ninq/l), q3LX

in
. This force causes vibration at the excitation surface LX

in
of

the same form u (q, z
in
) with the displacement amplitude which, for all elastic systems known

to the author, depends on the index n as a power function na, the power a being a function of
the system parameters. For example, for a thin plate #exurally vibrating under the action of
a transverse force oscillating along the x-axis applied to the linear edge z"z

in
, the

amplitude of displacement of the edge is proportional, for large n, to n3 and, hence, a"!3.
When the plate is excited by a bending moment, instead of the force, a is equal to a"!2,
etc.

The disturbance of the boundary LX
in

is transmitted through the body along the
co-ordinate z by a normal wave of the type

u (q, z):u (q, z
in
) expM[k2

0
!(2nn/l)2]1@2(z!z

in
)N, (B2)

where k
0
is the biggest wavenumber of the body (in isotropic media, it is the wavenumber of

shear waves). When the index n is not large, the z-component of the wavenumber, i.e., the
quantity in the square brackets of equation (B2), is positive, so that the sound wave
propagates along z without attenuation. Therefore, the "eld at the plane z"z

ac
and, at the

surface LX
ac
, has the amplitude of the same order as that at the plane z"z

in
. In other words,

the in#uence coe$cients and corresponding singular values are, in that case, determined by
the power function. However, when the index n exceeds a certain number n

0
, the

z-components of all the wavenumbers of the body are purely imaginary, and the "eld decays
exponentially along the z-axis, so that at the surface LX

ac
the amplitude is given by

u(q, z
ac
):u (q, z

in
) exp[!2nn(z

ac
!z

in
)/l].

Hence, the in#uence coe$cients and singular values decay with large n as in equation (B1),
the decay rate being equal to b"2n(z

ac
!z

in
)/l.

Similarly, if the excitation surface LX
in

and response surface LX
ac

lie on cylindrical
surfaces, r"r

in
and r

ac
, and the force is oscillatory with the polar angle u, f

n
(u)"f

0
cos(nu),

the dependence of the "eld on the radial co-ordinate r is described by the Hankel function,
so that the in#uence coe$cients, and hence singular values, are proportional to the ratio
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H
n
(k

0
r
ac
)/H

n
(k

0
r
in
). According to the Debay expansion of the Hankel function for nPR

[33], this ratio tends asymptotically to the power function (r
in
/r

ac
)n that can be written in the

exponential form (B1) with the decay coe$cient b"ln(r
ac
/r

in
).

This result also holds when LX
in

and LX
ac

lie on spherical surfaces, R"R
in

and R
ac

.
Assuming the angular dependence of the "eld as in the Legendre polynomials, it is easy to
show that the in#uence coe$cients and corresponding singular values are proportional to
the ratio of the spherical Hankel functions h

n
(k

0
R

ac
)/h

n
(k

0
R

in
) which, for large n, is

equivalent to (R
in
/R

ac
)n`1, i.e., again as in equation (B1) with b"ln(R

in
/R

ac
).

For more complex geometries of the surfaces LX
in

and LX
ac

, the asymptotics of the
singular values may di!er from those presented above by expressions for a and b. However,
the general character of the decay, determined by the product of power and exponential
functions, remains. This is supported by examples found in the literature (see, e.g., references
[14, 17, 34, 35]).
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